A limit theorem for empirical distribution functions
نویسندگان
چکیده
منابع مشابه
A Central Limit Theorem for Belief Functions
The purpose of this Note is to prove a form of CLT (Theorem 1.4) that is used in Epstein and Seo (2011). More general central limit results and other applications will follow in later drafts. Let S = fB;Ng and K (S) = ffBg; fNg; fB;Ngg the set of nonempty subsets of S. Denote by s1 = (s1; s2; :::) the generic element of S1 and by n (s1) the empirical frequency of the outcome B in the rst n exp...
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملA Central Limit Theorem for Iterated Random Functions
A central limit theorem is established for additive functions of a Markov chain that can be constructed as an iterated random function. The result goes beyond earlier work by relaxing the continuity conditions imposed on the additive function, and by relaxing moment conditions related to the random function. It is illustrated by an application to a Markov chain related to fractals.
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملA Limit Theorem for Copulas
We characterize convergence of a sequence of d-dimensional random vectors by convergence of the one-dimensional margins and of the copula. The result is applied to the approximation of portfolios modelled by t-copulas with large degrees of freedom, and to the convergence of certain dependence measures of bivariate distributions. AMS 2000 Subject Classifications: primary: 60F05, 62H05 secondary:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1958
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-17-1-71-77